Get daily PM2.5 model predictions
Arguments
- x
a vector of s2 cell identifers (
s2_cell
object)- dates
a list of date vectors for the predictions, must be the same length as
x
Value
a list of tibbles the same length as x
, each containing
columns for the predicted (pm25
) and its standard error (pm25_se
);
with one row per date in dates
. These numerics are the concentrations of fine
particulate matter, measured in micrograms per cubic meter. See vignette("cv-model-performance")
for more details on the cross validated accuracy of the daily PM2.5 model predictions.
Examples
d <- list(
"8841b39a7c46e25f" = as.Date(c("2023-05-18", "2023-11-06")),
"8841a45555555555" = as.Date(c("2023-06-22", "2023-08-15"))
)
predict_pm25(x = s2::as_s2_cell(names(d)), dates = d)
#> ℹ (down)loading random forest model
#> ✔ (down)loading random forest model [10.5s]
#>
#> ℹ checking that s2 are within the contiguous US
#> ✔ checking that s2 are within the contiguous US [50ms]
#>
#> ℹ adding coordinates
#> ✔ adding coordinates [20ms]
#>
#> ℹ adding elevation
#> ✔ adding elevation [70ms]
#>
#> ℹ adding HMS smoke data
#> ✔ adding HMS smoke data [966ms]
#>
#> ℹ adding NARR
#> ✔ adding NARR [439ms]
#>
#> ℹ adding gridMET
#> ✔ adding gridMET [919ms]
#>
#> ℹ adding MERRA
#> ✔ adding MERRA [4s]
#>
#> ℹ adding time components
#> ✔ adding time components [10ms]
#>
#> [[1]]
#> # A tibble: 2 × 2
#> pm25 pm25_se
#> <dbl> <dbl>
#> 1 8.03 0.592
#> 2 9.25 0.596
#>
#> [[2]]
#> # A tibble: 2 × 2
#> pm25 pm25_se
#> <dbl> <dbl>
#> 1 5.07 0.932
#> 2 6.02 0.493
#>