Census block-level weights are used to spatially interpolate CoDEC data packages from the census tract-level to other Cincy geographies.
Usage
codec_interpolate(from, to, weights = c("pop", "homes", "area"))
Arguments
- from
a CoDEC data package
- to
A simple features object returned by one of the
cincy_*_geo()
functions (i.e.,cincy_census_geo()
,cincy_neighborhood_geo()
, or cincy_zcta_geo()`)- weights
which census block-level weights to use; see details
Value
a tibble with a new geographic identifier column for the to
target geography (geoid
)
in addition to the (interpolated) columns in from
Details
Block-level total population (pop
), total number of homes (homes
), or total land area (area
)
from the 2020 Census can be chosen to use for the weights.
Geospatial intersection happens after transforming geographies to epsg:5072.
See codec_as_sf()
for adding geography to a CoDEC data package.
Variables beginning with "n_" are interpolated using a weighted sum;
all other variables are interpolated using a weighted mean.
Examples
codec_interpolate(get_codec_dpkg("acs_measures-v0.1.0"),
cincy_neighborhood_geo())
#> # A tibble: 51 × 24
#> geoid year median_home_value prop_poverty prop_recieved_public…¹
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Avondale 2022 186638. 0.436 0.380
#> 2 Bond Hill 2022 156866. 0.194 0.154
#> 3 CUF 2022 191368. 0.462 0.0528
#> 4 California 2022 597200 0.0523 0.0274
#> 5 Camp Washington 2022 100000 0.272 0.253
#> 6 Carthage 2022 90500 0.173 0.277
#> 7 Clifton 2022 384430. 0.150 0.0704
#> 8 College Hill 2022 148486. 0.197 0.180
#> 9 Columbia Tusculum 2022 412000 0.0366 0.0498
#> 10 Corryville 2022 200113. 0.523 0.0393
#> # ℹ 41 more rows
#> # ℹ abbreviated name: ¹prop_recieved_public_assistance_income
#> # ℹ 19 more variables: prop_family_households_with_single_householder <dbl>,
#> # prop_employment_among_civilian_workforce <dbl>,
#> # prop_housing_units_occupied_by_renters <dbl>,
#> # prop_median_rent_to_income_ratio_among_renters <dbl>,
#> # prop_housing_units_vacant <dbl>, …
codec_interpolate(get_codec_dpkg("property_code_enforcements-v0.2.0"),
cincy_census_geo("tract", "2020"))
#> # A tibble: 5,876 × 6
#> geoid year month violations_per_addr n_violations n_addr
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 39061000200 1999 10.5 NaN 0 0
#> 2 39061000200 2000 6.5 NaN 0 0
#> 3 39061000200 2001 6.5 0.0105 1 95
#> 4 39061000200 2002 6.5 0.0118 9 760
#> 5 39061000200 2003 6.5 0.0274 13 475
#> 6 39061000200 2004 6.5 0.0105 1 95
#> 7 39061000200 2005 6.5 0.0105 2 190
#> 8 39061000200 2006 6.5 0.0132 5 380
#> 9 39061000200 2007 6.5 0.0105 4 380
#> 10 39061000200 2008 6.5 0.0947 45 475
#> # ℹ 5,866 more rows