Census block-level weights are used to spatially interpolate CoDEC data packages from the census tract-level to other Cincy geographies.
Usage
codec_interpolate(from, to, weights = c("pop", "homes", "area"))
Arguments
- from
a CoDEC data package
- to
A simple features object returned by one of the
cincy_*_geo()
functions (i.e.,cincy_census_geo()
,cincy_neighborhood_geo()
, or cincy_zcta_geo()`)- weights
which census block-level weights to use; see details
Value
a tibble with a new geographic identifier column for the to
target geography (geoid
)
in addition to the (interpolated) columns in from
Details
Block-level total population (pop
), total number of homes (homes
), or total land area (area
)
from the 2020 Census can be chosen to use for the weights.
Geospatial intersection happens after transforming geographies to epsg:5072.
See codec_as_sf()
for adding geography to a CoDEC data package.
Variables beginning with "n_" are interpolated using a weighted sum;
all other variables are interpolated using a weighted mean.
Examples
codec_interpolate(codec_read("acs_measures"),
cincy_neighborhood_geo())
#> # A tibble: 51 × 24
#> geoid year prop_poverty prop_recieved_public…¹ prop_family_househol…²
#> <chr> <int> <dbl> <dbl> <dbl>
#> 1 Avondale 2023 0.468 0.440 0.784
#> 2 Bond Hill 2023 0.167 0.179 0.533
#> 3 CUF 2023 0.477 0.0616 0.470
#> 4 California 2023 0.0142 0.031 0.0668
#> 5 Camp Washin… 2023 0.298 0.340 0.540
#> 6 Carthage 2023 0.0675 0.200 0.554
#> 7 Clifton 2023 0.148 0.0573 0.253
#> 8 College Hill 2023 0.217 0.210 0.460
#> 9 Columbia Tu… 2023 0.0307 0.0594 0.204
#> 10 Corryville 2023 0.536 0.0278 0.288
#> # ℹ 41 more rows
#> # ℹ abbreviated names: ¹prop_recieved_public_assistance_income,
#> # ²prop_family_households_with_single_householder
#> # ℹ 19 more variables: prop_employment_among_civilian_workforce <dbl>,
#> # prop_housing_units_occupied_by_renters <dbl>,
#> # prop_median_rent_to_income_ratio_among_renters <dbl>,
#> # prop_housing_units_vacant <dbl>, …
codec_interpolate(codec_read("property_code_enforcements"),
cincy_census_geo("tract", "2019"))
#> # A tibble: 1,998 × 3
#> geoid year n_property_code_enforcements
#> <chr> <int> <dbl>
#> 1 39061000200 2017 2
#> 2 39061000200 2018 6
#> 3 39061000200 2019 10
#> 4 39061000200 2020 0
#> 5 39061000200 2021 8
#> 6 39061000200 2022 19
#> 7 39061000200 2023 30
#> 8 39061000200 2024 11
#> 9 39061000200 2025 0
#> 10 39061000700 2017 65
#> # ℹ 1,988 more rows